Arif's Blog

Minggu, 27 Mei 2012

Asteroid yang memungkinkan bumi kiamat !!!

0 komentar
Inilah daftar Asteroid yang memungkinkan menabrak bumi .... !!!
 
Asteroid 1997XF11, ditemukan pada 6 Desember 1997 oleh James Scotti dari Arizona Spacewatch Program, Asteroid tersebut akan sangat dekat dengan bumi pada 2028. Akan tetapi, berlawanan dengan laporan-laporan awal, tidak ditemukan adanya bahaya asteroid tersebut menghantam bumi.



Seperti semua asteroid yang bersinggungan dengan bumi, XF11 mungkin suatu hari akan menabrak planet kita ini, tapi sepertinya kejadian ini akan masih jauh dari kenyataan. Dan saat ini planet kita lebih beresiko dalam bahaya oleh asteroid yang tidak dikenal daripada XF11 atau obyek lain yang telah ditemukan


Asteroid Besar 2003 QQ47 dapat Menghantam Bumi Pada Tahun 2014
Para astronom amerika telah memperingat kepada British space monitor. Menurut mereka kemungkinan terjadinya benturan benda langit ini dengan bumi kita adalah 1:909.000 sangat kecil sekali ?? Asteroid yang diberi nama "2003 QQ47" menurut penghitungan para ahli astronom, asteroid ini diperkirakan akan menabrak bumi pada 21 maret 2014. lebih lanjut para ilmuwan memperkirakan jika asteroid ini menghantam bumi maka kekuatannya akan setara dengan 20 juta kali lipat dari bom atom yang pernah terjadi di hiroshima. Kira-kira bisa ngancurin 1 benua, tapi lihat perbandinganya 1:909.000..mendekati 0%.





Asteroid 1999 RQ36 yang Menghampiri bumi seratus enam puluh tahun lagi
Asteroid 1999 RQ36 ditemukan sepuluh tahun lalu. Tapi tidak dianggap sebagai yang perlu dikhawatirkan karena baru menabrak bumi dalam seratus tahun ke depan.

Perhitungan terbaru ada kemungkinan 1:1400 asteroid itu akan menghantam bumi antara tahun 2169 hingga 2199, menurut Andrea Milani dan sejawatnya dari University of Pisa di Italia.



Asteroid itu diperkirakan berdiameter 560 meter, lebih besar dibandingkan Apophis. Asteroid Apophis memiliki kemungkinan 1 banding 45.000 bisa menghantam bumi pada 2036. Kedua asteroid bisa menghasilkan tsunami dahsyat jika jatuh ke lautan.



Aphophis Akan Mengakhiri Bumi di Tahun 2036




Apophis (dikenal juga sebagai 2004 MN4) akan menciptakan bola besi dan iridium selebar 320 meter dengan berat 200 milyar ton apabila masuk ke atmosfer bumi. Benturan dengan asteroid ini juga akan menciptakan gelombang tsunami raksasa, menyapu peisir pantai maupun daratan dan juga akan menciptakan awan debu tebal yang akan menutupi sinar matahari sehingga menjadikan bumi menjadi gelap gulita. Kemungkinan tabrakan yang diprediksi NASA hanya 1:45000. Angka yang sangat kecil sekali. Lebih kecil dibanding dengan asteroid lainnya.
Kesimpunlanya bahwa kita seharusnya tak perlu terlalu khawatir tentang apa yang terjadi akan terjadi dibumi, kita tak pernah tahu apa yang memungkinkan kiamat  itu benar, sebagai umat beragama kita harus mencoba mendekatkan diri kepada Allah SWT, Karena hanya Allah SWT lah yang menentukan kiamat akankah asteroid2 itu mampu menghanvurkan bumi.

Rabu, 16 Mei 2012

The Ancient Massive Galaxy Mystery - 80% Appear Extremely Active and Growing

0 komentar

Digg.com. NASA's Chandra X-ray Observatory image above of the distant galaxy 3C295 shows an explosive galaxy enveloped by a vast cloud of fifty million degree gas. The gas cloud, which is visible only with an X-ray telescope, contains more than a hundred galaxies and enough material to make a thousand more. The galaxies are too cool to be visible in X-rays. Roughly two million light years in diameter, the cloud and its cluster of galaxies are among the most massive objects in the universe. It is so distant that we see it as it was five billion years ago.
Important research at Tufts University in 2010 revealed that some of the most massive galaxies in the Universe may have formed billions of years earlier than the current models predicted. The identified galaxies were five to ten times more massive than our own Milky Way. 
"We found a relatively large number of very massive, highly luminous galaxies that existed almost 12 billion years ago when the universe was still very young, about 1.5 billion years old. These results appear to disagree with the latest predictions from models of galaxy formation and evolution," said Tufts astrophysicist Danilo Marchesini, lead author on the paper and assistant professor of physics and astronomy at the Tufts School of Arts and Sciences.
"Current understanding of the physical processes responsible in forming such massive galaxies has difficulty reproducing these observations."
Collaborating with Marchesini were researchers from Yale University, Carnegie Observatories, Leiden University, Princeton University, the University of Kansas and the University of California-Santa Cruz.
Redshift refers to the phenomenon of a light wave stretching and moving toward longer wavelengths (the red end of the spectrum) as the emitting object travels away from an observer (Doppler Effect). This is similar to the pitch of a siren getting lower as the siren moves away.
The redshift of distant galaxies is due to the expansion of the universe. The larger the redshift, the more distant the galaxy is, or the farther back in time we are observing. The larger the redshift, the younger the universe in which the galaxy is observed.
By complementing existing data with deep images obtained through a new system of five customized near-infrared filters, the researchers were able to get a more complete view of the galaxy population at this early stage and more accurately characterize the sampled galaxies.
The researchers made another surprising discovery: More than 80 percent of these massive galaxies show very high infrared luminosities, which indicate that these galaxies are extremely active and most likely in a phase of intense growth. Massive galaxies in the local universe are instead quiescent and do not form stars at all.  
The researchers noted that there are two likely causes of such luminosity: New stars may be forming in dust-enshrouded bursts at rates of a few thousand solar masses per year. This would be tens to several hundreds of times greater than the rates estimated by spectral energy distribution (SED) modeling. Alternatively, the high infrared luminosity could be due to highly-obscured active galactic nuclei (AGN) ferociously accreting matter onto rapidly growing super-massive black holes at the galaxies' centers.
There might be an explanation that would at least partially reconcile observations with model-predicted densities. The redshifts of these massive galaxies, and hence their distances, were determined from the SED modeling and have not yet been confirmed spectroscopically. Redshift measurements from SED modeling are inherently less accurate than spectroscopy. Such "systemic uncertainties" in the determination of the distances of these galaxies might still allow for approximate agreement between observations and model predictions. But this is pure speculation, and highly doubtful.
If half of the massive galaxies are assumed to be slightly closer, at redshift z=2.6, when the universe was a bit older (2.5 billion years old) and very dusty (with dust absorbing much of the light emitted at ultra-violet and optical wavelengths), then the disagreement between observations and model predictions becomes only marginally significant.
However, the discovery of the existence of such massive, old and very dusty galaxies at redshift z=2.6 would itself be a notable discovery.
"Either way, it is clear that our understanding of how massive galaxies form is still far from satisfactory," said Marchesini. "The existence of these galaxies so early in the history of the universe, as well as their properties, can provide very important clues on how galaxies formed and evolved shortly after the Big Bang."
In prior findings, it appears that the early universe was a place of puzzling extremes and seeming contradictions. That’s the conclusion scientists are drawing from new infrared observations of a very distant, unusually bright and massive elliptical galaxy. This galaxy was spotted 10 billion light years away, and gives us a glimpse of what the Universe looked like when it was only about one-quarter of its current age.
Measurements show that the galaxy is as large and equally dense as elliptical galaxies that can be found much closer to us. Coupled with recent observations by a different research team - which found a very compact and extremely dense elliptical galaxy in the early Universe - the findings deepen the puzzle over how ‘fully grown’ galaxies can exist alongside seemingly ‘immature’ compact galaxies in the young universe.
‘What our observations show is that alongside these compact galaxies were other ellipticals that were anything up to 100 times less dense and between two and five times larger - essentially ‘fully grown’ --- and much more like the ellipticals we see in the local universe around us,’ explains Michele Cappellari of Oxford University’s Department of Physics. ‘The mystery is how these two different extremes, ‘grown up’ and seemingly ‘immature’ ellipticals, co-existed so early on in the evolution of the Universe.’
Elliptical galaxies, which are regular in shape, can be over ten times as massive as spiral galaxies such as our own Milky Way and contain stars which formed over 10 billion years ago. One way of checking the density of such galaxies is to use the infrared spectrum they emit to measure the spread of the velocities of their stars, which has to balance the pull of gravity.
Measurements of a distant compact elliptical galaxy have shown that its stars were dispersing at a velocity of about 500 km per second, consistent with its size but unknown in local galaxies.
The new study, using the 8.3-m Japanese Subaru telescope in Hawaii, found a ‘fully grown’ elliptical with stars dispersing at a velocity of lower than 300 km per second, much more like similar galaxies close to us.
‘Our next step is to use the Subaru telescope to find the relative proportion of these two extremes, fully grown and compact ellipticals, and see how they fit in with the timeline of the evolution of the young Universe,’ Michele tells us. ‘Hopefully this will give us new insights into solving this cosmic puzzle.’
In earlier surveys, the Advanced camera for Survey (ACS) and the Infrared Camera for Multi-object Spectrometer (NICMOS), the Hubble Ultra Deep Field (HUDF) have revealed the presence of estimated 10,000 fully formed galaxies in a patch of sky in the constellation, Formax - a region just below the constellation, Orion. According to the NASA, these fully formed galaxies emerged just 700 million years after the Big Bang, when the universe was barely 5% of its current age.
Also, using ISAAC near- infrared instrument aboard ESO's Very Large Telescope(VLT), and the phenomenon of gravitational lensing, a team of French and Swiss astronomers using Very Large Telescope (VLT) of the European Southern Observatory, have identified an extremely faint galaxy, Abell 1835 (image left).
According to interpretations, Abell 1835 must have formed just 460 million years after the universe was born, during the "Dark Age" when the first stars and galaxies were supposedly being born More recently, fully formed galaxies were discovered which are at a greater distance, over 13.1 billion light years (American Astronomical Society 2010), and which may have already been billions of years in age, over 13 billion years ago .
There are fully formed distant galaxies that must have already been billions of years old over 13 billion years ago; which would make them older than the Big Bang. Then there is the problem of the oldest globular clusters so far discovered, whose ages are in excess of 16 billion years. The Milky Way and other galaxies are also so old that they must have formed before the so called "Dark Ages" and thus almost immediately after the Big Bang, which is not consistent with theory.
Using the Infrared Array Camera (IRAC) aboard NASA's Spitzer Space Telescope, astronomers have detected about a dozen very red galaxies at a distance of 10 to12 billion light years from Earth (cfa Harvard 2005). According to the Big Bang model, these galaxies existed when the universe was only about 1/5 of its present age of 13.75 billion years.
The unpredicted existence of "red and dead" galaxies so early in the universe challenges Big Bang thdories relating to galaxy formation (cfa Harvard 2005). Analysis show that galaxies exhibit a large range of properties. Young galaxies with and without lots of dust, and old galaxies with and without dust.There is as much variety in the so called "early universe" as we see around "today" in galaxies closer to Earth.
Moreover, Spitzer Space Telescope, which is sensitive to the light from older and redder stars, has also revealed evidence for mature stars in less massive galaxies at similar distances (Spitzer 2005), when the Universe was supposedly less than one billion years old.

Senin, 14 Mei 2012

Supermoon "Terang dan Indah"

0 komentar








Fakta unik suppermoon


Bulan dalam keadaan Supermoon menjadi terlihat lebih besar saat naik ke langit. Menurut ilmuwan, bulan akan tampak besar kalau letaknya dekat horison. Perbedaan ukuran ini terjadi karena adanya ilusi dalam pikiran manusia. Untuk membuktikannya, pegang sebuah benda kecil di tangan dan bandingkan dengan ukuran bulan mulai dari garis horizon hingga posisi tertinggi. Ukuran bulan akan tetap sama.

Quantum Physics Enables Perfectly Secure Cloud Computing

0 komentar


ScienceDaily (Jan. 19, 2012) — Researchers have succeeded in combining the power of quantum computing with the security of quantum cryptography and have shown that perfectly secure cloud computing can be achieved using the principles of quantum mechanics. They have performed an experimental demonstration of quantum computation in which the input, the data processing, and the output remain unknown to the quantum computer.


The international team of scientists will publish the results of the experiment, carried out at the Vienna Center for Quantum Science and Technology (VCQ) at the University of Vienna and the Institute for Quantum Optics and Quantum Information (IQOQI), in the forthcoming issue of Science.
Quantum computers are expected to play an important role in future information processing since they can outperform classical computers at many tasks. Considering the challenges inherent in building quantum devices, it is conceivable that future quantum computing capabilities will exist only in a few specialized facilities around the world -- much like today's supercomputers. Users would then interact with those specialized facilities in order to outsource their quantum computations. The scenario follows the current trend of cloud computing: central remote servers are used to store and process data -- everything is done in the "cloud." The obvious challenge is to make globalized computing safe and ensure that users' data stays private.
The latest research, to appear in Science, reveals that puantum computers can provide an answer to that challenge. "Quantum physics solves one of the key challenges in distributed computing. It can preserve data privacy when users interact with remote computing centers," says Stefanie Barz, lead author of the study. This newly established fundamental advantage of quantum computers enables the delegation of a quantum computation from a user who does not hold any quantum computational power to a quantum server, while guaranteeing that the user's data remain perfectly private. The quantum server performs calculations, but has no means to find out what it is doing -- a functionality not known to be achievable in the classical world.
The scientists in the Vienna research group have demonstrated the concept of "blind quantum computing" in an experiment: they performed the first known quantum computation during which the user's data stayed perfectly encrypted. The experimental demonstration uses photons, or "light particles" to encode the data. Photonic systems are well-suited to the task because quantum computation operations can be performed on them, and they can be transmitted over long distances.
The process works in the following manner. The user prepares qubits -- the fundamental units of quantum computers -- in a state known only to himself and sends these qubits to the quantum computer. The quantum computer entangles the qubits according to a standard scheme. The actual computation is measurement-based: the processing of quantum information is implemented by simple measurements on qubits. The user tailors measurement instructions to the particular state of each qubit and sends them to the quantum server. Finally, the results of the computation are sent back to the user who can interpret and utilize the results of the computation. Even if the quantum computer or an eavesdropper tries to read the qubits, they gain no useful information, without knowing the initial state; they are "blind."
The research at the Vienna Center for Quantum Science and Technology (VCQ) at the University of Vienna and at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences was undertaken in collaboration with the scientists who originally invented the protocol, based at the University of Edinburgh, the Institute for Quantum Computing (University of Waterloo), the Centre for Quantum Technologies (National University of Singapore), and University College Dublin.

Sabtu, 05 Mei 2012

NASA's Spitzer Finds Galaxy with Split Personality

0 komentar

digg.com>PASADENA, Calif. -- While some galaxies are rotund and others are slender disks like our spiral Milky Way, new observations from NASA's Spitzer Space Telescope show that the Sombrero galaxy is both. The galaxy, which is a round elliptical galaxy with a thin disk embedded inside, is one of the first known to exhibit characteristics of the two different types. The findings will lead to a better understanding of galaxy evolution, a topic still poorly understood.
"The Sombrero is more complex than previously thought," said Dimitri Gadotti of the European Southern Observatory in Chile and lead author of a new paper on the findings appearing in the Monthly Notices of the Royal Astronomical Society. "The only way to understand all we know about this galaxy is to think of it as two galaxies, one inside the other."
The Sombrero galaxy, also known as NGC 4594, is located 28 million light-years away in the constellation Virgo. From our viewpoint on Earth, we can see the thin edge of its flat disk and a central bulge of stars, making it resemble a wide-brimmed hat. Astronomers do not know whether the Sombrero's disk is shaped like a ring or a spiral, but agree it belongs to the disk class.
"Spitzer is helping to unravel secrets behind an object that has been imaged thousands of times," said Sean Carey of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "It is intriguing Spitzer can read the fossil record of events that occurred billions of years ago within this beautiful and archetypal galaxy."
Spitzer captures a different view of the galaxy than visible-light telescopes. In visible views, the galaxy appears to be immersed in a glowing halo, which scientists had thought was relatively light and small. With Spitzer's infrared vision, a different view emerges. Spitzer sees old stars through the dust and reveals the halo has the right size and mass to be a giant elliptical galaxy.
While it is tempting to think the giant elliptical swallowed a spiral disk, astronomers say this is highly unlikely because that process would have destroyed the disk structure. Instead, one scenario they propose is that a giant elliptical galaxy was inundated with gas more than nine billion years ago. Early in the history of our universe, networks of gas clouds were common, and they sometimes fed growing galaxies, causing them to bulk up. The gas would have been pulled into the galaxy by gravity, falling into orbit around the center and spinning out into a flat disk. Stars would have formed from the gas in the disk.
"This poses all sorts of questions," said Rubén Sánchez-Janssen from the European Southern Observatory, co-author of the study. "How did such a large disk take shape and survive inside such a massive elliptical? How unusual is such a formation process?"
Researchers say the answers could help them piece together how other galaxies evolve. Another galaxy, called Centaurus A, appears also to be an elliptical galaxy with a disk inside it. But its disk does not contain many stars. Astronomers speculate that Centaurus A could be at an earlier stage of evolution than the Sombrero and might eventually look similar.
The findings also answer a mystery about the number of globular clusters in the Sombrero galaxy. Globular clusters are spherical nuggets of old stars. Ellipticals typically have a few thousand, while spirals contain a few hundred. The Sombrero has almost 2,000, a number that makes sense now but had puzzled astronomers when they thought it was only a disk galaxy.
NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA


 

Follow me!!